Parallelizing a finite element solver in computational hemodynamics

Author:

Auricchio F12,Ferretti M1,Lefieux A13,Musci M1,Reali A124,Trimarchi S5,Veneziani A3

Affiliation:

1. University of Pavia, Pavia, Italy

2. Istituto di Matematica Applicata e Tecnologie Informatiche (IMATI-CNR), Italy

3. Department of Mathematics and Computer Science. Emory University, USA

4. Technische Universität München. Institute for Advanced Study, Germany

5. IRCCS Policlinico San Donato, Italy

Abstract

In the last 20 years, a new approach has emerged to investigate the physiopathology of circulation. By merging medical images with validated numerical models, it is possible to support doctors’ decision-making process. The iCardioCloud project aims at establishing a computational framework to perform a complete patient-specific numerical analysis, specially oriented to aortic diseases (like dissections or aneurysms) and to deliver a compelling synthesis. The project can be considered a pioneering example of a Computer Aided Clinical Trial: i.e., a comprehensive analysis of patients where the level of knowledge extracted by traditional measures and statistics is enhanced through the massive use of numerical modeling. From a computer engineering point of view, iCardioCloud faces multiple challenges. First, the number of problems to solve for each patient is significantly huge – this is typical of computational fluid dynamics (CFD) – and it requires parallel methods. In addition, working in a clinical environment demands efficiency as the timeline requires rapid quantitative answers (as may happen in an emergency scenario). It is therefore mandatory to employ high-end parallel systems, such as large clusters or supercomputers. Here we discuss a parallel implementation of an application within the iCardioCloud project, built with a black-box approach – i.e., by assembling and configuring existing packages and libraries and in particular LifeV, a finite element library developed to solve CFD problems. The goal of this paper is to describe the software architecture underlying LifeV and to assess its performance and the most appropriate parallel paradigm. This paper is an extension of a previous work presented at the PBio 2015 Conference. This revision extends the description of the software architecture and discusses several new serial and parallel optimizations to the application. We discuss the introduction of hybrid parallelism in order to mitigate some performance problems previously experienced.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient parallel simulation of hemodynamics in patient-specific abdominal aorta with aneurysm;Computers in Biology and Medicine;2021-09

2. Optimized cloud-based scheduling for protein secondary structure analysis;The Journal of Supercomputing;2019-04-25

3. Parallelism in computational biology;The International Journal of High Performance Computing Applications;2016-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3