Affiliation:
1. Institute of Process Engineering, Chinese Academy of Sciences, P.R. China
2. Nvidia Corporation, P.R. China
Abstract
An efficient and highly scalable bond-order potential code has been developed for the molecular dynamics simulation of bulk silicon, reaching 1.87 Pflops (floating point operations per second) in single precision on 7168 graphic processing units (GPUs) of the Tianhe-1A system. Furthermore, by coupling GPUs and central processing units, we also simulated surface reconstruction of crystalline silicon at the sub-millimeter scale with more than 110 billion atoms, reaching 1.17 Pflops in single precision plus 92.1 Tflops in double precision on the entire Tianhe-1A system. Such simulations can provide unprecedented insight into a variety of microscopic behaviors or structures, such as doping, defects, grain boundaries, and surface reactions.
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献