Adaptive control in roll-forward recovery for extreme scale multigrid

Author:

Huber Markus1,Rüde Ulrich23,Wohlmuth Barbara1

Affiliation:

1. Technische Universität München, München, Germany

2. Friedrich-Alexander Universität Nürnberg-Erlangen, Erlangen, Germany

3. CERFACS, Parallel Algorithms Project, Toulouse, France

Abstract

With the increasing number of compute components, failures in future exa-scale computer systems are expected to become more frequent. This motivates the study of novel resilience techniques. Here, we extend a recently proposed algorithm-based recovery method for multigrid iterations by introducing an adaptive control. After a fault, the healthy part of the system continues the iterative solution process, while the solution in the faulty domain is reconstructed by an asynchronous online recovery. The computations in both the faulty and the healthy subdomains must be coordinated in a sensitive way, in particular, both under- and over-solving must be avoided. Both of these waste computational resources and will therefore increase the overall time-to-solution. To control the local recovery and guarantee an optimal recoupling, we introduce a stopping criterion based on a mathematical error estimator. It involves hierarchically weighted sums of residuals within the context of uniformly refined meshes and is well-suited in the context of parallel high-performance computing. The recoupling process is steered by local contributions of the error estimator before the fault. Failure scenarios when solving up to 6.9 × 1011 unknowns on more than 245,766 parallel processes will be reported on a state-of-the-art peta-scale supercomputer demonstrating the robustness of the method.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault-Tolerant Parallel Multigrid Method on Unstructured Adaptive Mesh;SIAM Journal on Scientific Computing;2024-06-06

2. Resiliency in numerical algorithm design for extreme scale simulations;The International Journal of High Performance Computing Applications;2021-12-10

3. TerraNeo—Mantle Convection Beyond a Trillion Degrees of Freedom;Software for Exascale Computing - SPPEXA 2016-2019;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3