High-performance conjugate-gradient benchmark: A new metric for ranking high-performance computing systems

Author:

Dongarra Jack1,Heroux Michael A2,Luszczek Piotr3

Affiliation:

1. Department of Electrical Engineering and Computer Science, University of Tennessee, USA; Computer Science and Mathematics Division, Oak Ridge National Laboratory, ORNL School of Mathematics and School of Computer Science, University of Manchester, UK

2. Scalable Algorithm Department, Sandia National Laboratories, Albuquerque, New Mexico

3. Department of Electrical Engineering and Computer Science, University of Tennessee, USA

Abstract

We describe a new high-performance conjugate-gradient (HPCG) benchmark. HPCG is composed of computations and data-access patterns commonly found in scientific applications. HPCG strives for a better correlation to existing codes from the computational science domain and to be representative of their performance. HPCG is meant to help drive the computer system design and implementation in directions that will better impact future performance improvement.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Reference25 articles.

1. Bailey D, Barscz E, Barton J, (1994) The NAS parallel benchmarks. Technical Report no. RNR-94-007, NASA Ames Research Center, USA.

2. Bailey D, Harris T, Saphir W, (1995) The NAS parallel benchmarks 2.0. Techinical Report no. NAS-95-020, NASA Ames Research Center, USA.

3. Byun JH, Lin R, Yelick KA, (2012) Autotuning sparse matrix-vector multiplication for multicore. Technical Report no. UCB/EECS-2012-215, University of California, USA.

4. s-step iterative methods for symmetric linear systems

5. D’Azevedo E, Eijkhout V, Romine C (1993) LAPACK working note 56: Reducing communication costs in the conjugate gradient algorithm on distributed memory multiprocessor. Technical Report no. CS-93-185, University of Tennessee, Knoxville, USA.

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3