High Performance Computing Productivity Model Synthesis

Author:

Kepner Jeremy1

Affiliation:

1. MIT LINCOLN LABORATORY, LEXINGTON, MA 02138, USA

Abstract

The Defense Advanced Research Projects Agency (DARPA) High Productivity Computing System (HPCS) program is developing systems that deliver increased value to users at a rate commensurate with the rate of improvement in the underlying technologies. For example, if the relevant technology was silicon, the goal of such a system would be to double in productivity (or value) every 18 months, following Moore's law. The key questions are how we define and measure productivity, and what the underlying technologies that affect productivity are. The goal of this paper is to synthesize from several different productivity models a single model that captures the main features of all the models. In addition we will start the process of putting the model on an empirical foundation by incorporating selected results from the software engineering and high performance computing (HPC) communities. An asymptotic analysis of the model is conducted to check that it makes sense in certain special cases. The model is extrapolated to a HPC context and several examples are explored, including HPC centers, HPC users, and interactive grid computing. Finally, the model hints at a profoundly different way of viewing HPC systems, where the user must be included in the equation, and innovative hardware is a key aspect to lowering the very high costs of HPC software.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3