Measuring High Performance Computing Productivity

Author:

Faulk Stuart1,Gustafson John2,Johnson Philip3,Porter Adam4,Tichy Walter5,Votta Lawrence6

Affiliation:

1. COMPUTER AND INFORMATION SCIENCE, UNIVERSITY OF OREGON, EUGENE, OR 97405, USA

2. ECS INC., PLEASANTON, CA 94588, USA

3. COLLABORATIVE SOFTWARE DEVELOPMENT LABORATORY, UNIVERSITY OF HAWAII, HONOLULU, HI 96822, USA

4. COMPUTER SCIENCE DEPARTMENT, UNIVERSITY OF MARYLAND, MD 20742, USA

5. INFORMATICS, UNIVERSITY OF KARLSRUHE, 76128 KARLSRUHE, GERMANY

6. SUN MICROSYSTEMS INC., MENLO PARK, CA 94025, USA

Abstract

One key to improving high performance computing (HPC) productivity is to find better ways to measure it. We define productivity in terms of mission goals, i.e. greater productivity means that more science is accomplished with less cost and effort. Traditional software productivity metrics and computing benchmarks have proven inadequate for assessing or predicting such end-to-end productivity. In this paper we introduce a new approach to measuring productivity in HPC applications that addresses both development time and execution time. Our goal is to develop a public repository of effective productivity benchmarks that anyone in the HPC community can apply to assess or predict productivity.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3