Parallel Implementation of a Spectral Scheme for Simulations of 3-D Dynamic Fracture Events

Author:

Breitenfeld M. Scot1,Geubelle Philippe H.1

Affiliation:

1. Department of Aeronautical and Astronautical Engineering, University of Illinois at Urbana-Champaign

Abstract

The spectral scheme, whose parallel implementation is described in this paper, is currently one of the most efficient computational approaches available to solve a class of fundamental 3-D dynamic fracture problems. The scheme uses a special form of the boundary integral elastodynamic formulation and allows for the solution of the spontaneous motion (initiation, propagation, and arrest) of arbitrary shape planar cracks embedded in a homogeneous or bimaterial medium and subjected to arbitrary loading conditions. The parallel implementation described hereafter allows for the efficient solution of very large dynamic fracture problems, typically one to two orders of magnitudes larger than those available to date. It is based on a stacking scheme that distributes the spectral modes across the processors to achieve balance in memory and CPU time requirements. Although developed for dynamic fracture simulations, the spectral scheme and its parallel implementation are applicable to other problems in computational physics characterized by a convolution operation involving a decaying kernel.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3