A runtime based comparison of highly tuned lattice Boltzmann and finite difference solvers

Author:

Wichmann Karl-Robert1,Kronbichler Martin1ORCID,Löhner Rainald2,Wall Wolfgang A1ORCID

Affiliation:

1. Institute for Computational Mechanics, Technical University of Munich, Germany

2. Center for Computational Fluid Dynamics, George Mason University, Fairfax, VA, USA

Abstract

The aim of this work is a fair and unbiased comparison of a lattice Boltzmann method (LBM) against a finite difference method (FDM) for the simulation of fluid flows. Rather than reporting metrics such as floating point operation rates or memory throughput, our work considers the engineering quest of reaching a desired solution quality with the least computational effort. The specific lattice Boltzmann and finite difference methods selected here are of a very basic nature to emphasize the influence of the fundamentally different approaches. To minimize the skew in the measurements, complex boundary condition schemes and further advanced techniques are avoided and instead both methods are fully explicit, weakly compressible approaches. Due to the highly optimized nature of both codes, different sets of restrictions are imposed by either method. Using the common set of features, two relatively simple test cases in terms of a duct flow and the flow in a lid driven cavity are considered and are tuned to perform optimally with both approaches. As a third test case, a transient flow around a square cylinder is used to demonstrate the applicability to engineering oriented settings and in a temporal domain. The performance of the two methods is found to be very similar with no full advantage for any of the approaches. Overall a tendency toward better performance of the LBM at larger target errors and for indirect benchmark quantities, such as lift and drag, is observed, while the FDM excels at smaller target errors and direct comparisons of velocity and pressure profiles to analytical solutions. Other factors such as the difficulty of setting consistent boundary conditions in the LBM or the effect of stabilization in the FDM are likely to be the most important criteria when searching for a very fast flow solver for practical applications.

Funder

Bayerisches Kompetenznetzwerk fuer Technisch-Wissenschaftliches Hoch- und Hoechstleistungsrechnen

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3