Implementation and evaluation of the HPC challenge benchmark in the XcalableMP PGAS language

Author:

Nakao Masahiro1,Murai Hitoshi1,Iwashita Hidetoshi1,Boku Taisuke2,Sato Mitsuhisa1

Affiliation:

1. RIKEN Advanced Institute for Computational Science, Japan

2. Center for Computational Sciences, University of Tsukuba, Japan

Abstract

To improve productivity for developing parallel applications on high performance computing systems, the XcalableMP PGAS language has been proposed. XcalableMP supports both a typical parallelization under the “global-view memory model” which uses directives and a flexible parallelization under the “local-view memory model” which uses coarray features. The goal of the present paper is to clarify XcalableMP’s productivity and performance. To do so, we implement and evaluate the high performance computing challenge benchmark, namely, EP STREAM Triad, High Performance Linpack, Global fast Fourier transform, and RandomAccess on the K computer using up to 16,384 compute nodes and a generic cluster system using up to 128 compute nodes. We found that we could more easily implement the benchmarks using XcalableMP rather than using MPI. Moreover, most of the performance results using XcalableMP were almost the same as those using MPI.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Reference21 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixed-Language Programming with XcalableMP;XcalableMP PGAS Programming Language;2020-11-20

2. Implementation and Performance Evaluation of Omni Compiler;XcalableMP PGAS Programming Language;2020-11-20

3. Highly multiplexed SiPM signal readout for brain-dedicated TOF-DOI PET detectors;Physica Medica;2019-12

4. Asynchronous Brain-computer Interface Intelligent Wheelchair System Based on Alpha Wave and SSVEP EEG Signals;2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP);2019-07

5. Multi-accelerator extension in OpenMP based on PGAS model;Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region;2019-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3