The Importance of Non-Data-Communication Overheads in MPI

Author:

Balaji Pavan1,Chan Anthony2,Gropp William3,Thakur Rajeev1,Lusk Ewing1

Affiliation:

1. MATHEMATICS AND COMPUTER SCIENCE DIVISION, ARGONNE NATIONAL LABORATORY, ARGONNE, IL 60439, USA,

2. MATHEMATICS AND COMPUTER SCIENCE DIVISION, ARGONNE NATIONAL LABORATORY, ARGONNE, IL 60439, USA,.

3. DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS, URBANA, IL 61801, USA,

Abstract

With processor speeds no longer doubling every 18—24 months owing to the exponential increase in power consumption and heat dissipation, modern high-end computing systems tend to rely less on the performance of single processing units and instead rely on achieving high performance by using the parallelism of a massive number of low-frequency/low-power processing cores. Using such low-frequency cores, however, puts a premium on end-host pre- and post-communication processing required within communication stacks, such as the Message Passing Interface (MPI) implementation. Similarly, small amounts of serialization within the communication stack that were acceptable on small/medium systems can be brutal on massively parallel systems. Thus, in this paper, we study the different non-data-communication overheads within the MPI implementation on the IBM Blue Gene/P system. Specifically, we analyze various aspects of MPI, including the MPI stack overhead itself, overhead of allocating and queueing requests, queue searches within the MPI stack, multi-request operations, and various others. Our experiments, that scale up to 131,072 cores of the largest Blue Gene/P system in the world (80% of the total system size), reveal several insights into overheads in the MPI stack, which were not previously considered significant, but can have a substantial impact on such massive systems.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3