Performance Comparison of Coscheduling Algorithms for Non-Dedicated Clusters Through a Generic Framework

Author:

Choi Gyu Sang1,Agarwal Saurabh2,Kim Jin-Ha3,Das Chita R.4,Yoo Andy B.5

Affiliation:

1. Samsung Advanced Institute of Technology, Samsung Electronics, MT. 14-1, Nong-Seo-Dong, Giheung-Gu, Yongin-Si, Gyeonggi-Do, Korea 446-712,

2. Ross School of Business, University of Michigan, 701 Tappan Street, Ann Arbor, MI 48109

3. Samsung Networks, 8F, Asem Tower, World Trade Center, 159-1, Samsung-Dong, Kangnam-Ku, Seoul, Korea 135-798

4. The Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802

5. Lawrence Livermore National Laboratory, Livermore, CA 94551

Abstract

In this paper, we address several key issues in designing coscheduling algorithms for clusters. First, we propose a generic framework for deploying coscheduling techniques by providing a reusable and dynamically loadable kernel module. Second, we implement several communication-driven coscheduling algorithms [ dynamic coscheduling (DCS), spin block (SB) and periodic boost (PB)] on a 16- node Linux cluster using the above framework. Third, with exhaustive experimentation using mixed workloads, we observe that unlike PB, which provided the best performance on a Solaris platform, the SB scheme outperforms all other techniques on a Linux platform. Finally, we investigate the impact of several job placement strategies, multiprogramming level (MPL), communication intensity and CPU and I/O intensive jobs on the performance of these coscheduling schemes. The experimental results show that the blocking-based coscheduling scheme (SB) has better tolerance to system workload variation compared with the spin-based schemes (DCS and PB), and overall, the blocking-based coscheduling scheme seems a better choice for non-dedicated Linux clusters.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A preemption-based runtime to efficiently schedule multi-process applications on heterogeneous clusters with GPUs;Proceedings of the 22nd international symposium on High-performance parallel and distributed computing;2013-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3