Performance portable parallel programming of heterogeneous stencils across shared-memory platforms with modern Intel processors

Author:

Szustak Lukasz1,Bratek Pawel1

Affiliation:

1. Institute of Computer and Information Science, Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Czestochowa, Poland

Abstract

In this work, we take up the challenge of performance portable programming of heterogeneous stencil computations across a wide range of modern shared-memory systems. An important example of such computations is the Multidimensional Positive Definite Advection Transport Algorithm (MPDATA), the second major part of the dynamic core of the EULAG geophysical model. For this aim, we develop a set of parametric optimization techniques and four-step procedure for customization of the MPDATA code. Among these techniques are: islands-of-cores strategy, (3+1)D decomposition, exploiting data parallelism and simultaneous multithreading, data flow synchronization, and vectorization. The proposed adaptation methodology helps us to develop the automatic transformation of the MPDATA code to achieve high sustained scalable performance for all tested ccNUMA platforms with Intel processors of last generations. This means that for a given platform, the sustained performance of the new code is kept at a similar level, independently of the problem size. The highest performance utilization rate of about 41–46% of the theoretical peak, measured for all benchmarks, is provided for any of the two-socket servers based on Skylake-SP (SKL-SP), Broadwell, and Haswell CPU architectures. At the same time, the four-socket server with SKL-SP processors achieves the highest sustained performance of around 1.0–1.1 Tflop/s that corresponds to about 33% of the peak.

Funder

Narodowe Centrum Nauki

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3