GenSLMs: Genome-scale language models reveal SARS-CoV-2 evolutionary dynamics

Author:

Zvyagin Maxim1,Brace Alexander12,Hippe Kyle1,Deng Yuntian34,Zhang Bin5,Bohorquez Cindy Orozco5,Clyde Austin12,Kale Bharat6,Perez-Rivera Danilo17,Ma Heng1,Mann Carla M.12,Irvin Michael1,Ozgulbas Defne G.8ORCID,Vassilieva Natalia5,Pauloski James Gregory2ORCID,Ward Logan1,Hayot-Sasson Valerie129,Emani Murali19,Foreman Sam19,Xie Zhen1,Lin Diangen12ORCID,Shukla Maulik12,Nie Weili3,Romero Josh3,Dallago Christian310,Vahdat Arash3,Xiao Chaowei38,Gibbs Thomas3,Foster Ian12ORCID,Davis James J.12,Papka Michael E.1911,Brettin Thomas112,Stevens Rick1212,Anandkumar Anima313,Vishwanath Venkatram19,Ramanathan Arvind1ORCID

Affiliation:

1. Data Science and Learning Division, Argonne National Laboratory, Lemont, IL, USA

2. Department of Computer Science, University of Chicago, Hyde Park, IL, USA

3. NVIDIA Inc., Santa Clara, CA, USA

4. Harvard University, Cambridge, MA, USA

5. Cerebras Inc., San Jose, CA, USA

6. Computer Science Department, Northern Illinois University, DeKalb, IL, USA

7. New York University, New York, NY, USA

8. Department of Biochemistry, University of Illinois-Urbana Champaign, Champaign, IL, USA

9. Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL, USA

10. Computer Science Department, Technical University of Munich, Munich,Germany

11. Computer Science Department, University of Illinois Chicago, Chicago, IL, USA

12. Computing, Environment and Life Sciences Directorate, Argonne National Laboratory, Lemont, IL, USA

13. Computer Science Department, California Institute of Technology, Pasadena, CA, USA

Abstract

We seek to transform how new and emergent variants of pandemic-causing viruses, specifically SARS-CoV-2, are identified and classified. By adapting large language models (LLMs) for genomic data, we build genome-scale language models (GenSLMs) which can learn the evolutionary landscape of SARS-CoV-2 genomes. By pre-training on over 110 million prokaryotic gene sequences and fine-tuning a SARS-CoV-2-specific model on 1.5 million genomes, we show that GenSLMs can accurately and rapidly identify variants of concern. Thus, to our knowledge, GenSLMs represents one of the first whole-genome scale foundation models which can generalize to other prediction tasks. We demonstrate scaling of GenSLMs on GPU-based supercomputers and AI-hardware accelerators utilizing 1.63 Zettaflops in training runs with a sustained performance of 121 PFLOPS in mixed precision and peak of 850 PFLOPS. We present initial scientific insights from examining GenSLMs in tracking evolutionary dynamics of SARS-CoV-2, paving the path to realizing this on large biological data.

Funder

Exascale Computing Project

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3