Reducing communication in parallel graph search algorithms with software caches

Author:

Cicotti Pietro1,Shantharam Manu1,Carrington Laura1

Affiliation:

1. San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, USA

Abstract

In many scientific and computational domains, graphs are used to represent and analyze data. Such graphs often exhibit the characteristics of small-world networks: few high-degree vertexes connect many low-degree vertexes. Despite the randomness in a graph search, it is possible to capitalize on the characteristics of small-world networks and cache relevant information of high-degree vertexes. We applied this idea by caching remote vertex ids in a parallel breadth-first search benchmark. Our experiment with different implementations demonstrated significant performance improvements over the reference implementation in several configurations, using 64 to 1024 cores. We proposed a system design in which resources are dedicated exclusively to caching and shared among a set of nodes. Our evaluation demonstrates that this design reduces communication and has the potential to improve performance on large-scale systems in which the communication cost increases significantly with the distance between nodes. We also tested a memcached system as the cache server finding that its generic protocol, which does not match our usage semantics, hinders significantly the potential performance improvements and suggested that a generic system should also support a basic and lightweight communication protocol to meet the needs of high-performance computing applications. Finally, we explored different configurations to find efficient ways to utilize the resources allocated to solve a given problem size; to this extent, we found utilizing half of the compute cores per allocated node improves performance, and even in this case, caching variants always outperform the reference implementation.

Funder

NSF

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3