Evaluation of XcalableACC with tightly coupled accelerators/InfiniBand hybrid communication on accelerated cluster

Author:

Nakao Masahiro1,Odajima Tetsuya1,Murai Hitoshi1,Tabuchi Akihiro2,Fujita Norihisa3,Hanawa Toshihiro4,Boku Taisuke53,Sato Mitsuhisa1

Affiliation:

1. RIKEN Center for Computational Science, Kobe, Japan

2. Fujitsu Laboratories Ltd, Kawasaki, Japan

3. Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan

4. Information Technology Center, The University of Tokyo, Tokyo, Japan

5. Graduate School of Systems and Information Engineering, University of Tsukuba, Tsukuba, Japan

Abstract

Accelerated clusters, which are cluster systems equipped with accelerators, are one of the most common systems in parallel computing. In order to exploit the performance of such systems, it is important to reduce communication latency between accelerator memories. In addition, there is also a need for a programming language that facilitates the maintenance of high performance by such systems. The goal of the present article is to evaluate XcalableACC (XACC), a parallel programming language, with tightly coupled accelerators/InfiniBand (TCAs/IB) hybrid communication on an accelerated cluster. TCA/IB hybrid communication is a combination of low-latency communication with TCA and high bandwidth with IB. The XACC language, which is a directive-based language for accelerated clusters, enables programmers to use TCA/IB hybrid communication with ease. In order to evaluate the performance of XACC with TCA/IB hybrid communication, we implemented the lattice quantum chromodynamics (LQCD) mini-application and evaluated the application on our accelerated cluster using up to 64 compute nodes. We also implemented the LQCD mini-application using a combination of CUDA and MPI (CUDA + MPI) and that of OpenACC and MPI (OpenACC + MPI) for comparison with XACC. Performance evaluation revealed that the performance of XACC with TCA/IB hybrid communication is 9% better than that of CUDA + MPI and 18% better than that of OpenACC + MPI. Furthermore, the performance of XACC was found to further increase by 7% by new expansion to XACC. Productivity evaluation revealed that XACC requires much less change from the serial LQCD code to implement the parallel LQCD code than CUDA + MPI and OpenACC + MPI. Moreover, since XACC can perform parallelization while maintaining the sequential code image, XACC is highly readable and shows excellent portability due to its directive-based approach.

Funder

Core Research for Evolutional Science and Technology

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3