Optimizing parallel particle tracking in Brownian motion using machine learning

Author:

Nikolić SrđanORCID,Stevanović Nenad,Ivanović Miloš

Abstract

In this paper, we present a generic, scalable and adaptive load balancing parallel Lagrangian particle tracking approach in Wiener type processes such as Brownian motion. The approach is particularly suitable in problems involving particles with highly variable computation time, like deposition on boundaries that may include decay, when particle lifetime obeys exponential distribution. At first glance, Lagranginan tracking is highly suitable for a distributed programming model due to the independence of motion of separate particles. However, the commonly employed Decomposition Per Particle (DPP) method, where each process is in charge of a certain number of particles, actually displays poor parallel efficiency due to the high particle lifetime variability when dealing with a wide set of deposition problems that optionally include decay. The proposed method removes DPP defects and brings a novel approach to discrete particle tracking. The algorithm introduces master/slave model dubbed Partial Trajectory Decomposition (PTD), in which a certain number of processes produce partial trajectories and put them into the shared queue, while the remaining processes simulate actual particle motion using previously generated partial trajectories. Our approach also introduces meta-heuristics for determining the optimal values of partial trajectory length, chunk size and the number of processes acting as producers/consumers, for the given total number of participating processes (Optimized Partial Trajectory Decomposition, OPTD). The optimization process employs a surrogate model to estimate the simulation time. The surrogate is based on historical data and uses a coupled machine learning model, consisting of classification and regression phases. OPTD was implemented in C, using standard MPI for message passing and benchmarked on a model of 220 Rn progeny in the diffusion chamber, where particle motion is characterized by an exponential lifetime distribution and Maxwell velocity distribution. The speedup improvement of OPTD is approximatelly 320% over standard DPP, reaching almost ideal speedup on up to 256 CPUs.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Basketball Flight Trajectory Tracking using Video Signal Filtering;Mobile Networks and Applications;2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3