Productively accelerating positron emission tomography image reconstruction on graphics processing units with Julia

Author:

Van Gendt Michiel1,Besard Tim2,Vandenberghe Stefaan1,De Sutter Bjorn1ORCID

Affiliation:

1. Ghent University, Gent, Belgium

2. Julia Computing, Gent, Belgium

Abstract

Research in medical imaging is hampered by a lack of programming languages that support productive, flexible programming as well as high performance. In search for higher quality imaging, researchers can ideally experiment with novel algorithms using rapid-prototyping languages such as Python. However, to speed up image reconstruction, computational resources such as those of graphics processing units (GPUs) need to be used efficiently. Doing so requires re-programming the algorithms in lower-level programming languages such as CUDA C/C++ or rephrasing them in terms of existing implementations of established algorithms in libraries. The former has a detrimental impact on research productivity and requires system-level programming expertise, and the latter puts severe constraints on the flexibility to research novel algorithms. Here, we investigate the use of the Julia scientific programming language in the domain of PET image reconstruction as a means to obtain both high performance (portability) on GPUs and high programmer productivity and flexibility, all at once, without requiring expert GPU programming knowledge. Using rapid-prototyping features of Julia, we developed basic and performance-optimized GPU implementations of baseline maximum likelihood expectation maximization (MLEM) positron emission tomography (PET) image reconstruction algorithms, as well as multiple existing algorithmic extensions. Thus, we mimic the effort that researchers would have to invest to evaluate the quality and performance potential of algorithms. We evaluate the obtained performance and compare it to state-of-the-art existing implementations. We also analyse and compare the required programming effort. With the Julia implementations, performance in line with existing GPU implementations written in the low-level, unproductive programming language CUDA C is achieved, while requiring much less programming effort, even less than what is needed for much less performant CPU implementations in C++. Switching to Julia as the programming language of choice can therefore boost the productivity of research into medical imaging and deliver excellent performance at a low cost in terms of programming effort.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3