A parallel hierarchical blocked adaptive cross approximation algorithm

Author:

Liu Yang1ORCID,Sid-Lakhdar Wissam1,Rebrova Elizaveta2,Ghysels Pieter1,Li Xiaoye Sherry1

Affiliation:

1. Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

2. Department of Mathematics, University of California, Los Angeles, CA, USA

Abstract

This article presents a low-rank decomposition algorithm based on subsampling of matrix entries. The proposed algorithm first computes rank-revealing decompositions of submatrices with a blocked adaptive cross approximation (BACA) algorithm, and then applies a hierarchical merge operation via truncated singular value decompositions (H-BACA). The proposed algorithm significantly improves the convergence of the baseline ACA algorithm and achieves reduced computational complexity compared to the traditional decompositions such as rank-revealing QR. Numerical results demonstrate the efficiency, accuracy, and parallel scalability of the proposed algorithm.

Funder

Exascale Computing Project

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive cross tubal tensor approximation;Linear Algebra and its Applications;2024-08

2. A Review on Large-Scale Data Processing with Parallel and Distributed Randomized Extreme Learning Machine Neural Networks;Mathematical and Computational Applications;2024-05-27

3. A Novel Parallel Direct Solver Using Adaptive Cross Approximation for Analysis of Electromagnetic Radiation Problems With Complex Structures;IEEE Transactions on Antennas and Propagation;2024-03

4. Task-based low-rank hybrid parallel Cholesky factorization for distributed memory environment;Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region;2024-01-18

5. Review of Recent Advances in Gaussian Process Regression Methods;Advances in Intelligent Systems and Computing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3