I/O performance of the Santos Dumont supercomputer

Author:

Bez Jean Luca1ORCID,Carneiro André Ramos2,Pavan Pablo José1,Girelli Valéria Soldera1,Boito Francieli Zanon3,Fagundes Bruno Alves2,Osthoff Carla2,da Silva Dias Pedro Leite4,Méhaut Jean-François3,Navaux Philippe OA1

Affiliation:

1. Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

2. Laboratory for Scientific Computing (LNCC), Petrópolis, Brazil

3. Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, Grenoble, France

4. Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo (USP), São Paulo, Brazil

Abstract

In this article, we study the I/O performance of the Santos Dumont supercomputer, since the gap between processing and data access speeds causes many applications to spend a large portion of their execution on I/O operations. For a large-scale expensive supercomputer, it is essential to ensure applications achieve the best I/O performance to promote efficient usage. We monitor a week of the machine’s activity and present a detailed study on the obtained metrics, aiming at providing an understanding of its workload. From experiences with one numerical simulation, we identified large I/O performance differences between the MPI implementations available to users. We investigated the phenomenon and narrowed it down to collective I/O operations with small request sizes. For these, we concluded that the customized MPI implementation by the machine’s vendor (used by more than 20% of the jobs) presents the worst performance. By investigating the issue, we provide information to help improve future MPI-IO collective write implementations and practical guidelines to help users and steer future system upgrades. Finally, we discuss the challenge of describing applications I/O behavior without depending on information from users. That allows for identifying the application’s I/O bottlenecks and proposing ways of improving its I/O performance. We propose a methodology to do so, and use GROMACS, the application with the largest number of jobs in 2017, as a case study.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uncovering I/O demands on HPC platforms: Peeking under the hood of Santos Dumont;Journal of Parallel and Distributed Computing;2023-12

2. Análise de Custo e Desempenho de um Sistema de Modelagem Atmosférica Tolerante a Falhas no AWS ParallelCluster;Anais do XXIV Simpósio em Sistemas Computacionais de Alto Desempenho (SSCAD 2023);2023-10-17

3. Parallel Performance and I/O Profiling of HPC RNA-Seq Applications;Computación y Sistemas;2022-12-25

4. ParslRNA-Seq: An Efficient and Scalable RNAseq Analysis Workflow for Studies of Differentiated Gene Expression;Communications in Computer and Information Science;2022

5. Unsteady Adjoint Method for Aeroacoustic Propeller Optimization;AIAA AVIATION 2021 FORUM;2021-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3