'pMATLAB Parallel MATLAB Library'

Author:

Travinin Bliss N.1,Kepner J.1

Affiliation:

1. MIT LINCOLN LABORATORY, 244 WOOD STREET, LEXINGTON, MA 02420

Abstract

MATLAB® has emerged as one of the languages most commonly used by scientists and engineers for technical computing, with approximately one million users worldwide. The primary benefits of MATLAB are reduced code development time via high levels of abstractions (e.g. first class multi-dimensional arrays and thousands of built in functions), interpretive, interactive programming, and powerful mathematical graphics. The compute intensive nature of technical computing means that many MATLAB users have codes that can significantly benefit from the increased performance offered by parallel computing. pMatlab provides this capability by implementing parallel global array semantics using standard operator overloading techniques. The core data structure in pMatlab is a distributed numerical array whose distribution onto multiple processors is specified with a “map” construct. Communication operations between distributed arrays are abstracted away from the user and pMatlab transparently supports redistribution between any block-cyclic-overlapped distributions up to four dimensions. pMatlab is built on top of the MatlabMPI communication library and runs on any combination of heterogeneous systems that support MATLAB, which includes Windows, Linux, MacOS X, and SunOS. This paper describes the overall design and architecture of the pMatlab implementation. Performance is validated by implementing the HPC Challenge benchmark suite and comparing pMatlab performance with the equivalent C+MPI codes. These results indicate that pMatlab can often achieve comparable performance to C+MPI, usually at one tenth the code size. Finally, we present implementation data collected from a sample of real pMatlab applications drawn from the approximately one hundred users at MIT Lincoln Laboratory. These data indicate that users are typically able to go from a serial code to an efficient pMatlab code in about 3 hours while changing less than 1% of their code.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. pPython Performance Study;2023 IEEE High Performance Extreme Computing Conference (HPEC);2023-09-25

2. pPython for Parallel Python Programming;2022 IEEE High Performance Extreme Computing Conference (HPEC);2022-09-19

3. ForkJoinPcc Algorithm for Computing the Pcc Matrix in Gene Co-Expression Networks;Electronics;2022-04-07

4. ForkJoinPcc Algorithm for Computing the Pcc Matrix in Gene Co-Expression Networks;ELECTRONICS-SWITZ;2022

5. On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization;Applied Mathematics and Computation;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3