Efficient implementation of low-order-precision smoothed particle hydrodynamics

Author:

Hosono Natsuki12ORCID,Furuichi Mikito2ORCID

Affiliation:

1. Center for Planetary Science, Integrated Research Center of Kobe University, Kobe, Japan

2. Center for Mathematical Science and Advanced Technology, Research Institute for Value-Added-Information Generation, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Abstract

Smoothed particle hydrodynamics (SPH) method is widely accepted as a flexible numerical treatment for surface boundaries and interactions. High-resolution simulations of hydrodynamic events require high-performance computing (HPC). There is a need for an SPH code that runs efficiently on modern supercomputers involving accelerators such as NVIDIA or AMD graphics processing units. In this work, we applied half-precision, which is widely used in artificial intelligence, to the SPH method. However, improving HPC performance at such low-order precisions is a challenge. An as-is implementation with half-precision will have lower computational cost than that of float/double precision simulations, but also worsens the simulation accuracy. We propose a scaling and shifting method that maintains the simulation accuracy near the level of float/double precision. By examining the impact of half-precision on the simulation accuracy and time-to-solution, we demonstrated that the use of half-precision can improve the computational performance of SPH simulations for scientific purposes without sacrificing the accuracy. In addition, we demonstrated that the efficiency of half-precision depends on the architecture used.

Funder

New Energy and Industrial Technology Development Organization

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3