Affiliation:
1. LOS ALAMOS NATIONAL LABORATORY, LOS ALAMOS, NM, USA
Abstract
Many institutions are now developing large-scale, complex, coupled multiphysics computational simulations for massively parallel platforms for the simulation of the performance of nuclear weapons and certification of the stockpile, and for research in climate and weather prediction, magnetic and inertial fusion energy, environmental systems, astrophysics, aerodynamic design, combustion, biological and biochemical systems, and other areas. The successful development of these simulations is aided by attention to sound software project management and software engineering. We have developed “lessons learned” from a set of code projects that the Department of Energy National Nuclear Security Agency has sponsored to develop nuclear weapons simulations over the last 50 years. We find that some, but not all, of the software project management and development practices (rather than processes) commonly employed for non-technical software add value to the development of scientific software and we identify those that we judge add value. Another key finding, consistent with general software industry experience, is that the optimal project schedule and resource level are solely determined by the requirements once the requirements are fixed.
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献