A PCISPH implementation using distributed multi-GPU acceleration for simulating industrial engineering applications

Author:

Verma Kevin12ORCID,McCabe Christopher1,Peng Chong13,Wille Robert2

Affiliation:

1. ESS Engineering Software Steyr GmbH, Steyr, Austria

2. Institute for Integrated Circuits, Johannes Kepler University Linz, Linz, Austria

3. Institut für Geotechnik, Universität für Bodenkultur, Vienna, Austria

Abstract

Predictive–corrective incompressible smoothed particle hydrodynamics (PCISPH) is a promising variant of the particle-based fluid modeling technique smoothed particle hydrodynamics (SPH). In PCISPH, a dedication prediction–correction scheme is employed which allows for using a larger time step and thereby outperforms other SPH variants by up to one order of magnitude. However, certain characteristics of the PCISPH lead to severe synchronization problems that, thus far, prevented PCISPH from being applied to industrial scenarios where high performance computing techniques need to leveraged in order to simulate in appropriate resolution. In this work, we are for the first time, presenting a highly accelerated PCISPH implementation which employs a distributed multi-GPU architecture. To that end, dedicated optimization techniques are presented that allow to overcome the drawbacks caused by the algorithmic characteristics of PCISPH. Experimental evaluations on a standard dam break test case and an industrial water splash scenario confirm that PCISPH can be efficiently employed to model real-world scenarios involving a large number of particles.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solid-Fluid Interaction Simulation System Based on SPH Unified Particle Framework;2022 International Conference on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME);2022-06

2. Eulerian incompressible smoothed particle hydrodynamics on multiple GPUs;Computer Physics Communications;2022-04

3. SPH Variants on Multi-GPU Architectures;High Performance Simulation for Industrial Paint Shop Applications;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3