Rethinking key–value store for parallel I/O optimization

Author:

Kougkas Anthony1,Eslami Hassan2,Sun Xian-He1,Thakur Rajeev3,Gropp William2

Affiliation:

1. Department of Computer Science, Illinois Institute of Technology, Chicago, IL, USA

2. Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA

3. Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA

Abstract

Key–value stores are being widely used as the storage system for large-scale internet services and cloud storage systems. However, they are rarely used in HPC systems, where parallel file systems are the dominant storage solution. In this study, we examine the architecture differences and performance characteristics of parallel file systems and key–value stores. We propose using key–value stores to optimize overall Input/Output (I/O) performance, especially for workloads that parallel file systems cannot handle well, such as the cases with intense data synchronization or heavy metadata operations. We conducted experiments with several synthetic benchmarks, an I/O benchmark, and a real application. We modeled the performance of these two systems using collected data from our experiments, and we provide a predictive method to identify which system offers better I/O performance given a specific workload. The results show that we can optimize the I/O performance in HPC systems by utilizing key–value stores.

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bridging Storage Semantics Using Data Labels and Asynchronous I/O;ACM Transactions on Storage;2020-11-30

2. LABIOS;Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing;2019-06-17

3. Vidya: Performing Code-Block I/O Characterization for Data Access Optimization;2018 IEEE 25th International Conference on High Performance Computing (HiPC);2018-12

4. IRIS;Proceedings of the 2018 International Conference on Supercomputing;2018-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3