Co-design Center for Exascale Machine Learning Technologies (ExaLearn)

Author:

Alexander Francis J1ORCID,Ang James2,Bilbrey Jenna A2,Balewski Jan3,Casey Tiernan4,Chard Ryan5,Choi Jong6,Choudhury Sutanay2,Debusschere Bert4,DeGennaro Anthony M1,Dryden Nikoli78,Ellis J Austin4,Foster Ian5,Cardona Cristina Garcia6,Ghosh Sayan2,Harrington Peter3,Huang Yunzhi2,Jha Shantenu1,Johnston Travis2,Kagawa Ai1,Kannan Ramakrishnan2,Kumar Neeraj2,Liu Zhengchun5,Maruyama Naoya7,Matsuoka Satoshi910,McCarthy Erin711,Mohd-Yusof Jamaludin12,Nugent Peter3,Oyama Yosuke710,Proffen Thomas6,Pugmire David6,Rajamanickam Sivasankaran4,Ramakrishniah Vinay12,Schram Malachi2,Seal Sudip K2,Sivaraman Ganesh5,Sweeney Christine12,Tan Li1,Thakur Rajeev5,Van Essen Brian7,Ward Logan5,Welch Paul12,Wolf Michael4,Xantheas Sotiris S2,Yager Kevin G1,Yoo Shinjae1,Yoon Byung-Jun1

Affiliation:

1. Brookhaven National Laboratory, Upton, NY, USA

2. Pacific Northwest National Laboratory, Richland, WA, USA

3. Lawrence Berkeley National Laboratory, Berkeley, CA, USA

4. Sandia National Laboratories, Albuquerque, NM, USA

5. Argonne National Laboratory, Lemont, IL, USA

6. Oak Ridge National Laboratory, Oak Ridge, TN, USA

7. Lawrence Livermore National Laboratories, Livermore, CA, USA

8. ETH Zurich, Zurich, Switzerland

9. RIKEN Center for Computational Science, Kobe, Japan

10. Tokyo Institute of Technology, Tokyo, Japan

11. University of Oregon, Eugene, OR, USA

12. Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract

Rapid growth in data, computational methods, and computing power is driving a remarkable revolution in what variously is termed machine learning (ML), statistical learning, computational learning, and artificial intelligence. In addition to highly visible successes in machine-based natural language translation, playing the game Go, and self-driving cars, these new technologies also have profound implications for computational and experimental science and engineering, as well as for the exascale computing systems that the Department of Energy (DOE) is developing to support those disciplines. Not only do these learning technologies open up exciting opportunities for scientific discovery on exascale systems, they also appear poised to have important implications for the design and use of exascale computers themselves, including high-performance computing (HPC) for ML and ML for HPC. The overarching goal of the ExaLearn co-design project is to provide exascale ML software for use by Exascale Computing Project (ECP) applications, other ECP co-design centers, and DOE experimental facilities and leadership class computing facilities.

Funder

Department of Energy, Labor and Economic Growth

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a science exocortex;Digital Discovery;2024

2. High Throughput Training of Deep Surrogates from Large Ensemble Runs;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11

3. Building the I (Interoperability) of FAIR for Performance Reproducibility of Large-Scale Composable Workflows in RECUP;2023 IEEE 19th International Conference on e-Science (e-Science);2023-10-09

4. AL4GAP: Active learning workflow for generating DFT-SCAN accurate machine-learning potentials for combinatorial molten salt mixtures;The Journal of Chemical Physics;2023-07-10

5. Autonomous x-ray scattering;Nanotechnology;2023-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3