DAME: Runtime-compilation for data movement

Author:

Prabhu Tarun1,Gropp William1

Affiliation:

1. Department of Computer Science, University of Illinois, Urbana–Champaign, USA

Abstract

Modern machines consist of multiple compute devices and complex memory hierarchies. For many applications, it is imperative that any data movement between and within the various compute devices be done as efficiently as possible in order to obtain maximum performance. However, hand-optimizing code for one architecture will likely sacrifice both performance portability and software maintainability. In addition, some optimization decisions are best made at runtime. This suggests that the problem ought to be tackled on two fronts. First, provide the programmer with a declarative language to describe data layouts and data motion. This would allow the runtime system to be tuned for each architecture by a specialist and free the programmer to concentrate on the application itself. Second, exploit the execution time information to optimize the data movement code further. MPI derived datatypes accomplish the former task and Just In Time (JIT) compilation can be used for the latter. In this paper, we present DAME—a language and interpreter designed to be used as the backend for MPI derived datatypes. We also present DAME-L and DAME-X, two JIT-enabled implementations of DAME, all of which have been integrated into MPICH. We evaluate their performance on DDTBench and two mini-applications written with MPI derived datatypes and obtain communication speedups of up to 20× and mini-application speedups of up to 3×.

Funder

National Nuclear Security Administration

Publisher

SAGE Publications

Subject

Hardware and Architecture,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Layout-aware Hardware-assisted Designs for Derived Data Types in MPI;2021 IEEE 28th International Conference on High Performance Computing, Data, and Analytics (HiPC);2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3