Parallelization of the Hoshen-Kopelman Algorithm Using a Finite State Machine

Author:

Constantin Jeffrey M.1,Berry Michael W.1,Vander Zanden Bradley T.1

Affiliation:

1. DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996-1301

Abstract

In applications such as landscape ecology, computer mod eling is used to assess habitat fragmentation and its ecological implications. Maps (two-dimensional grids) of habitat clusters or patches are analyzed to determine the number, location, and sizes of clusters. Recently, improved sequential and parallel implementations of the Hoshen- Kopelman cluster identification algorithm have been designed. These implementations use a finite state ma chine to reduce redundant integer comparisons during the cluster identification process. The sequential implementa tion for large maps performs cluster identification by par titioning the map along row boundaries and merging the results of the partitions. The parallel implementation on a 32-processor Thinking Machines CM-5 provides an effi cient mechanism for performing cluster identification in parallel. Although the sequential implementation achieved promising speed improvements ranging from 1.39 to 2.00 over an existing Hoshen-Kopelman implementation, the parallel implementation achieved a minimum speedup of 5.41 over the improved sequential implementation, exe cuted on a Sun SPARCstation 10.

Publisher

SAGE Publications

Subject

General Engineering,General Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3