Affiliation:
1. High Performance Computing Research, Lawrence Berkeley National Laboratory, USA
2. Department of Computer Science, University of California, USA
Abstract
This paper presents a scalable high-performance software library to be used for graph analysis and data mining. Large combinatorial graphs appear in many applications of high-performance computing, including computational biology, informatics, analytics, web search, dynamical systems, and sparse matrix methods. Graph computations are difficult to parallelize using traditional approaches due to their irregular nature and low operational intensity. Many graph computations, however, contain sufficient coarse-grained parallelism for thousands of processors, which can be uncovered by using the right primitives. We describe the parallel Combinatorial BLAS, which consists of a small but powerful set of linear algebra primitives specifically targeting graph and data mining applications. We provide an extensible library interface and some guiding principles for future development. The library is evaluated using two important graph algorithms, in terms of both performance and ease-of-use. The scalability and raw performance of the example applications, using the Combinatorial BLAS, are unprecedented on distributed memory clusters.
Subject
Hardware and Architecture,Theoretical Computer Science,Software
Cited by
222 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献