Dynamic loading response of an additively produced bio-inspired nacre structure with foam and acrylic filling

Author:

Adithya RN1,Ganapathy Sakthi Balan1ORCID,Sakthivel Aravind Raj1ORCID,Sultan Mohamed Thariq Hameed234,Shahar Farah Syazwani2

Affiliation:

1. Department of Manufacturing Engineering, School of Mechanical Engineering (SMEC), Vellore Institute of Technology, Vellore, Tamil Nadu, India

2. Department of Aerospace, Faculty of Engineering, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia

3. Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Selangor Darul Ehsan, Malaysia

4. Aerospace Malaysia Innovation Centre (944751-A), Prime Minister’s Department, Jalan Impact, Selangor Darul Ehsan, Malaysia

Abstract

Numerous structures gain inspiration from nature and have been effectively incorporated into different applications such as automobiles and airplanes. In order to effectively withstand impact loads and achieve efficient energy absorption, it is necessary to incorporate appropriate structures along with suitable filler materials. This study examines the energy absorption capacities of a nacre structured core with foam filling at the central nacre cell cavities, as well as an acrylic filling at the top and bottom sides, under low velocity impacts. The design of experiments involved identifying and varying three important design parameters which influence the energy absorption behavior of the composites. Subsequently, fillers were incorporated and the specimens were subjected to drop weight testing. The composite material exhibited minimal deformations while absorbing a maximum energy of 40.87 J. Therefore, it proved that this composite could withstand dynamic impact loads in the absence of fiber face sheets, and adhesion between the PLA-carbon fiber and acrylic fill was also improved under these conditions. The higher energy absorption behavior was obtained due to the intermittent force transfer in the transverse direction due to the presence of the cross webs on the top and bottom of the composite plate. The alternate arrangement of the hard and flexible materials in the composite leads to the suppression of the stress step by step which results in high energy absorption behavior. In order to achieve optimal energy absorption with minimized deformations, the core structure must possess a nacre wall thickness of 2 mm with double cross web design.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3