Risk evaluation of ballistic penetration by small caliber ammunition of live-fire shoot house facilities with comparison to numerical and experimental results

Author:

Davis Brad Gregory1ORCID,Thompson Jacob1,Morningstar William1,McCool Ean1,Peri Vishnu1,Davidson F. Todd1

Affiliation:

1. United States Military Academy, West Point, NY, USA

Abstract

The development of advanced small caliber weapon systems has resulted in rounds with more material penetration capabilities. The increased capabilities may mean that existing live-fire facilities will no longer be adequate for the training and certification of military and law enforcement personnel. Constraints on training in many live-fire shoot house facilities are already in place, with some allowing only single round impact during training. With little understanding of the probability of perforation, or failure, of existing containment systems, this study evaluates risk by studying the single round impact of small caliber ammunition against live-fire shoot house containment systems constructed from AR500 steel panels with two-inch ballistic rubber covering. An analytical and numerical study was conducted using an existing model for steel penetration developed by Alekseevskii-Tate and the EPIC finite element code. A modified form of the advancing cavity model for the ballistic resistance of the target material was used to account for the relatively unconfined material resulting from the studied impacts. These results are then compared to experimental tests conducted by Goodman for rounds of various small calibers impacting live-fire facility containment systems. Projectile and target characteristics were then modeled as continuous random variables, and Monte Carlo simulations were conducted using the validated analytical model to estimate the probability of a single round impact perforating the live-fire facility containment system. An importance sampling scheme was used to reduce the variance of the solution and provide a more accurate estimate of the probability of failure. The Alekseevskii-Tate model was found to provide accurate estimates of the depth of penetration when compared to experimental and numerical results at ordnance velocities and an estimate of the probability of failure is on the order of 1x10-5. This study provides useful tools for the analysis of existing live-fire facilities against future and existing ammunition, and for the design of new facilities. When coupled with Monte Carlo simulation techniques, a risk-based approach to certify live-fire facilities for use with any variety of small arms ammunition can be applied.

Funder

U.S. Army Combat Capabilities Development Command Armaments Center

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimation of terminal ballistics parameters for several 7.62×51 mm projectiles using numerical simulations;The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology;2024-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3