Physics-informed regularisation procedure in neural networks: An application in blast protection engineering

Author:

Pannell Jordan J1ORCID,Rigby Sam E1ORCID,Panoutsos George2

Affiliation:

1. Department of Civil & Structural Engineering, University of Sheffield, Sheffield, UK

2. Department of Automatic Control & Systems Engineering, University of Sheffield, Sheffield, UK

Abstract

Machine learning offers the potential to enable probabilistic-based approaches to engineering design and risk mitigation. Application of such approaches in the field of blast protection engineering would allow for holistic and efficient strategies to protect people and structures subjected to the effects of an explosion. To achieve this, fast-running engineering models that provide accurate predictions of blast loading are required. This paper presents a novel application of a physics-guided regularisation procedure that enhances the generalisation ability of a neural network (PGNN) by implementing monotonic loss constraints to the objective function due to specialist prior knowledge of the problem domain. The PGNN is developed for prediction of specific impulse loading distributions on a rigid target following close-in detonation of a spherical mass of high explosive. The results are compared to those from a traditional neural network (NN) architecture and stress-tested through various data holdout approaches to evaluate its generalisation ability. In total the results show five statistically significant performance premiums, with four of these being achieved by the PGNN. This indicates that the proposed methodology can be used to improve the accuracy and physical consistency of machine learning approaches for blast load prediction.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3