Inferring the ballistic resistance of thick targets from static deep indentation tests

Author:

Rosenberg Zvi1,Malka-Markovitz Alon1,Kositski Roman1

Affiliation:

1. RAFAEL Advanced Defense Systems Ltd, Haifa, Israel

Abstract

The aim of this work is to demonstrate that one can derive the value of the dynamic resistive stress, which a given target exerts on a rigid projectile, by following the force needed to push a rigid indenter into the target in a static deep indentation test. In this study, we used a relatively soft target made of a lead-antimony alloy and a concrete target, representing ductile metals and brittle solids, respectively. For both targets, we followed the force–distance curves obtained by the deep indentations of hard punches, as they were slowly pushed in the targets by a loading frame. The effect of friction during these tests was taken into account in order to obtain the net axial resisting stresses, which were applied by the targets on these indenters. These static resisting stresses, at deep penetrations, were compared with the dynamic resisting stresses, which were inferred from the impacts of armor-piercing projectiles on these targets. The good agreement between the two sets of values strongly enhances the claim that one can use static indentation tests in order to estimate the ballistic resistance of various targets to rigid projectile penetration. The effect of strain rate sensitivity is highlighted by the test results for both the metallic and concrete targets. In addition, important insights concerning the cavitation phenomenon in the penetration of rigid projectiles are also highlighted in this work.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3