Vulnerability analysis of tunnel linings under blast loading

Author:

Chaudhary Ranjit Kumar1,Mishra Sunita1,Chakraborty Tanusree1,Matsagar Vasant1

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India

Abstract

In the present study, a comparative assessment on the performance of conventional and advanced tunnel lining materials subjected to blast loading is done using a three-dimensional non-linear finite element analysis procedure. The conventional tunnel lining materials analyzed herein are plain concrete, steel, reinforced cement concrete, and steel fiber–reinforced concrete. The advanced tunnel lining materials analyzed herein are dytherm, polyurethane, and aluminum syntactic foam sandwich panels with steel–foam–steel composites. The pressure generated by 10 kg Trinitrotoluene (TNT) is applied to each element on the inner wall of the tunnel which has an effect equal to the scaled distance Z = 1.16 m/kg1/3. Analyses are conducted by varying the thickness of lining materials for a tunnel built in rock domain. The response of the tunnel lining materials, for example, deformation, stresses, and strains generated at different interfaces, is compared with each other to assess the best suitable material for the present blast scenario discussed herein. It is observed from the simulations that the reinforced cement concrete and steel–aluminum syntactic foam (90 µm)–steel are found to be the suitable tunnel lining materials for the present blasting scenario described herein. Moreover, a set of probabilistic analysis is also performed for the suitable tunnel lining materials decided through deterministic analyses using Monte Carlo simulations. The results obtained are normal random distribution curves depicting the extent of deformation in lining materials. A probability failure curve is also proposed for the suitable lining materials.

Funder

SENS4Metro under Department of Science and Technology (DST), India

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3