Blast resistance of timber structural elements: A state-of-the-art review

Author:

Mourão Rodrigo1ORCID,Caçoilo Andreia2ORCID,Teixeira-Dias Filipe3,Montalva Arturo1,Stone Hollice1,Jacques Eric4ORCID

Affiliation:

1. Stone Security Engineering, New York City, NY, USA

2. Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA

3. Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh, Edinburgh, UK

4. Charles E. Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg VA, USA

Abstract

The response of structures subject to impulsive loads remains a field of intense research. Whilst traditional construction materials, such as steel and concrete/masonry, have been the focus of most studies, further research on the performance of alternative materials for blast-resistant applications has been driven by their growing use in sustainable construction. Over the last years, engineers have been re-evaluating the use of timber as a prime construction material for a range of building types, from small office to high-rise residential buildings. As a result, there is now a growing need to study the blast resistance of timber structures, as they may become potential targets of terrorist attacks or being placed in the blast-radius of other critical buildings. A review of existing research on the blast resistance of timber structures is presented and key factors on the blast analysis and design of such structures are discussed. Most of the research has been conducted on light-frame wood stud walls, glued- and cross-laminated timber, and addresses material properties under high strain rates, typical failure modes, behaviour of structural connections and retrofitting solutions. Failure modes are reported to be highly dependent on the element layout and manufacturing aspects, and dynamic increase factors for the modulus of elasticity and maximum strength in the ranges of [1.05, 1.43] and [1.14, 1.60], respectively, have been proposed for different timber elements. Mechanical connectors play a significant role in dissipating energy through plastic deformation, as the brittle nature of timber elements compromises the development of their full capacity. Regardless the element type, SDOF models can accurately predict the dynamic response as long as idealised boundary conditions can be considered. Overall, although a good amount of research is available, more extensive research is needed to guide the design and engineering practice and contribute to the development of design codes and testing standards for timber structures under blast loading.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Reference103 articles.

1. Aranha C, Branco J, Lourenço P (2018) Finite Element Modelling of a Three-Storey Cross Laminated Timber Structure. In: International Conference on Advances in Construction Materials and Systems, Chennai, India, 2017.

2. Compressive behaviour of concrete at high strain rates

3. Structural response of corrugated plates under blast loading: The influence of the pressure-time history

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3