Influence of prestressing force on performance of concrete plates under impact loading

Author:

Kumar Vimal1ORCID,Iqbal MA2,Mittal AK3

Affiliation:

1. Department of Civil Engineering, National Institute of Technology Hamirpur, Hamirpur, India

2. Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, India

3. CSIR-Central Building Research Institute, Roorkee, India

Abstract

An experimental and numerical study has been performed to explore the performance of one-way pretensioned concrete plates against impact loading. The impact resistance, experimental results and damage within the pretensioned concrete have been compared with the non-pretensioned concrete. The plate specimens of concrete grades M40 and M60 have been pretensioned to prestress level 10 and 20% of the compressive strength of the concrete. While, all the tendons employed in the non-pretensioned concrete were kept unstressed. The plates were struck at the mid-span by a steel mass (242.85 kg) dropped from 0.5 to 1.0 m heights. The numerical simulations have been executed using explicit finite element code considering the Holmquist–Johnson–Cook (HJC) and the metal plasticity model for concrete and steel, correspondingly. The performance of the plates is governed by the grade of concrete, impact energy and level of the prestress within the concrete. The induced prestress within the concrete enhanced the stiffness and, consequently, the impact resistance of the pretensioned concrete plates. The pretensioned concrete hence witnessed increased impact force and reduced deflection by 18.1% and 11.0%, correspondingly, compared to the non-pretensioned concrete. The splitting and punching crack within the plates became pronounced once the drop height increased from 0.5 m to 1.0 m. The simulations have estimated the peak impact force and reaction within 19.7% and 15.5% deviation, respectively. The displacement and energy absorption have been calculated using an analytical methodology closely correlated with the actual results within 18% and 14% deviation, respectively. Further, the simulations performed on two-way pretensioned concrete have shown improved performance of the plates witnessing no splitting crack and uniform crack distribution compared to one-way pretensioned concrete.

Funder

Science and Engineering Research Board

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3