Response mechanisms of reinforced concrete panels to the combined effect of close-in blast and fragments: An integrated experimental and numerical analysis

Author:

Del Linz Paolo1ORCID,Fung Tat Ching1,Lee Chi King2,Riedel Werner13

Affiliation:

1. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore

2. School of Engineering and Information Technology, UNSW Canberra at the Australian Defence Force Academy, Campbell, ACT, Australia

3. Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute (EMI), Freiburg, Germany

Abstract

The effect of cased explosives on reinforced concrete components is important for the design of protective structures, since the interaction between the fragments and blast waves can modify or even amplify the damage caused. This work deals with the development of finite element analysis techniques to simulate the combined loading and to understand this interaction. In this work, an experiment conducted with a cased explosive and further tests from the literature were used together to develop and stepwise validate finite element analysis models of the different loading phases. The casing fragment velocities and spatial distribution were derived from explosive expansion simulations of the hull using the smooth particle hydrodynamics method together with a momentum conserving penalty contact. The blast loading applied on the concrete plate was based on established empirical formulae, acting at the same times as the fragments. Comparing the final damage with the experimental records revealed good agreement for most damage patterns. The model was used to identify the different damage evolution stages, such as shock-induced shear plug formation and subsequent structural dynamic bending with the associated damage. In addition, differential model variants with fragment and blast loading in isolation were simulated to resolve the response and damage of each loading component. The blast load caused predominantly bending deformations and damage, while the fragments caused similar cratering as seen in the combined case. However, the final combined damage was larger than that caused by each phenomenon. In the given situation, the fragments created most damage, but the established modelling approach opens the perspective to study these effects also for other ratios of explosive to casing weight and scaled distances, where the contributions might differ. Establishing a valid modelling approach is thus an important step towards more insight into the interaction of these complex loading types and damage effects.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3