Dynamic performance of ultra-high performance fiber-reinforced concrete panel exposed to explosive loading

Author:

Abedini Masoud1ORCID,Zhang Chunwei1

Affiliation:

1. Centre for Multidisciplinary Infrastructure Engineering, Shenyang University of Technology, Shenyang, China

Abstract

Ultra-high performance fiber reinforced concrete (UHPFRC) is a cement-based composite material mixing with reactive powder and steel fibers. It is characterized by its high strength, high ductility, and high toughness and such characteristics enable its great potential in protective engineering against severe dynamic loads. In the current research, the dynamic performance of the concrete panel made with ultra-high performance fiber subjected to explosive loading was investigated. For this purpose, several concrete panel samples were considered and modeled in ABAQUS finite element software. The accuracy of the numerical model is verified by comparing the numerical simulation results with available testing data. First, the considered panel was modeled with normal concrete then it was modeled with UHPFRC concrete, and the effect of using this type of concrete on the behavior of concrete panels was investigated. After analyzing and examining the models, their behavior such as the degree of vulnerability, more vulnerable points and changes in the locations that occurred in each of the models were obtained and compared. The results demonstrate that the use of UHPFRC significantly improves the blast performance of RC panels by reducing maximum and residual displacements, enhancing damage tolerance, and increasing energy absorption. The results also indicate that the increase in the intensity of explosion has increased the base reaction force in all panels.

Funder

Ministry of Science and Technology of China

the Department of Science and Technology of Shandong Province

the State Key Laboratory of Precision Blasting of Jianghan University

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3