Failure and impact resistance analysis of plain and fiber-reinforced-polymer confined concrete cylinders under axial impact loads

Author:

Pham Thong M1ORCID,Chen Wensu1,Hao Hong1

Affiliation:

1. Center for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Bentley, WA, Australia

Abstract

This study conducts an experimental and numerical investigation on the failure and impact resistance of plain and fiber-reinforced polymer-confined concrete. The impact resistance of concrete cylinders wrapped with different types of fibers including carbon fiber and glass fiber is examined. Drop-weight tests are utilized to conduct the impact tests while the numerical simulation is conducted using LS-DYNA. The experimental and numerical results have proved that fiber-reinforced polymer can be efficiently used to improve the impact resistance of concrete cylinders. In general, fiber-reinforced polymer ruptures at a lower strain than those in static tests and the rupture strain of glass fiber is much higher than that of carbon fiber. The findings in the experimental tests are confirmed by the numerical results. Glass fiber, therefore, exhibits a much better performance than carbon fiber. It is recommended to use glass fiber to enhance the impact resistance of concrete structures strengthened with fiber-reinforced polymer. In addition, the stress evolution of the specimens is analyzed to investigate the failure mechanism.

Publisher

SAGE Publications

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3