Optical coherence tomography for elucidation of flow-diversion phenomena: The concept of endothelized mural thrombus behind reversible in-stent stenosis in flow-diverters

Author:

Monteiro Andre1ORCID,Lopes Demetrius K1,Aghaebrahim Amin1,Hanel Ricardo2

Affiliation:

1. Department of Cerebrovascular and Endovascular Surgery, Baptist Neurological Institute/Lyerly Neurosurgery, Jacksonville, FL, USA

2. Department of Neurosurgery, Advocate Aurora Health, Chicago, IL, USA

Abstract

Purpose Flow-diverters have revolutionized the endovascular treatment of intracranial aneurysms, offering a durable solution to aneurysms with high recurrence rates after conventional stent-assisted coiling. Events that occur after treatment with flow-diversion, such as in-stent stenosis (ISS) are not well understood and require further assessment. After assessing an animal model with Optical Coherence Tomography (OCT), we propose a concept that could explain the mechanism causing reversible ISS after treatment of intracranial aneurysms with flow-diverters. Methods Six Pipeline Flex embolization devices (PED-Flex), six PED with Shield technology (PED-Shield), and four Solitaire AB devices were implanted in the carotid arteries (two stents per vessel) of four pigs. Intravascular optical coherence tomography (OCT) and digital subtraction angiography (DSA) images obtained on day 21 were compared to histological specimens. Results A case of ISS in a PED-Flex device was assessed with OCT imaging. Neointima with asymmetrical topography completely covering the PED struts was observed. Histological preparations of the stenotic area demonstrated thrombus on the surface of device struts, covered by neointima. Conclusion This study provides a plausible concept for reversible ISS in flow-diverters. Based on an observation of a previous experiment, we propose that similar cases of ISS are related to thrombus presence underneath endothelization, but further experiments focused on this phenomenon are needed. Optical Coherence Tomography will be useful tool when available for clinical use.

Publisher

SAGE Publications

Subject

Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3