A simplified cranial cavity model to understand the relationship between intracranial pressure and dural sinus pressure

Author:

Lee KB1ORCID,Kim MH2,Yoon J-T2,Song Y2,Kwon B2ORCID,Hwang SM2,Choi JH2,Lee DH2ORCID

Affiliation:

1. Department of Radiologic Technology, Chungbuk Health & Science University, Cheongju 28150, Republic of Korea

2. Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea

Abstract

Although accurate intracranial pressure (ICP) monitoring is essential for the diagnosis and treatment of severe brain diseases, current methods are performed invasively. Therefore, a safe and less invasive ICP measurement is required. The purpose of our study was to develop a simplified cranial cavity model for a better understanding of the relationship between the ICP and the pressure measurement within the dural venous sinus (DVS) to support the validity of using sinus pressure as the surrogate of the ICP. The in-house cranial cavity model had three components: the brain part, the DVS part, and the subarachnoid space (SAS) part. Pressure in other parts was measured when the pressure in the SAS part and, separately, brain part was increased from 0 (baseline) to 50 mmHg at intervals of 10 mmHg. When the pressure in the SAS part was increased from 10 to 50 mmHg at 10 mmHg interval, pressures of both the brain and DVS parts increased without significant difference (all P > 0.05). However, pressures in both the SAS and DVS parts differed while the pressure in the brain part was increased. The pressures in both parts showed about 70% of the increase in the brain part. Nevertheless, the pressures in the SAS and DVS parts were not significantly different ( P > 0.05). A simplified in-house cranial cavity model was developed consisting of three compartments to represent the actual intracranial spaces. The pressure measurement within the DVS was feasible to use as a surrogate for the ICP measurement.

Funder

Advanced Technology Center Plus

Publisher

SAGE Publications

Subject

Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3