Feasibility of robotic neuroendovascular surgery

Author:

Morrison Joseph D.1ORCID,Joshi Krishna C.1,Beer Furlan Andre1ORCID,Kolb Bradley1ORCID,Radaideh Yazan1,Munich Stephan1,Crowley Webster1,Chen Michael1

Affiliation:

1. Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA

Abstract

Background Several recent reports of CorPath GRX vascular robot (Cordinus Vascular Robotics, Natick, MA) use intracranially suggest feasibility of neuroendovascular application. Further use and development is likely. During this progression it is important to understand endovascular robot feasibility principles established in cardiac and peripheral vascular literature which enabled extension intracranially. Identification and discussion of robotic proof of concept principals from sister disciplines may help guide safe and accountable neuroendovascular application. Objective Summarize endovascular robotic feasibility principals established in cardiac and peripheral vascular literature relevant to neuroendovascular application Methods Searches of PubMed, Scopus and Google Scholar were conducted under PRISMA guidelines 1 using MeSH search terms. Abstracts were uploaded to Covidence citation review (Covidence, Melbourne, AUS) using RIS format. Pertinent articles underwent full text review and findings are presented in narrative and tabular format. Results Search terms generated 1642 articles; 177, 265 and 1200 results for PubMed, Scopus and Google Scholar respectively. With duplicates removed, title review identified 176 abstracts. 55 articles were included, 45 from primary review and 10 identified during literature review. As it pertained to endovascular robotic feasibility proof of concept 12 cardiac, 3 peripheral vascular and 5 neuroendovascular studies were identified. Conclusions Cardiac and peripheral vascular literature established endovascular robot feasibility and efficacy with equivalent to superior outcomes after short learning curves while reducing radiation exposure >95% for the primary operator. Limitations of cost, lack of haptic integration and coaxial system control continue, but as it stands neuroendovascular robotic implementation is worth continued investigation.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3