In vitro and in vivo Studies of the Extent of Electrothrombotic Deposition of Blood Elements on the Surface of Electrolytically Detachable Coils

Author:

Henkes H.,Brew S.1,Felber S.2,Miloslavski E.,Mogilevski G.3,Tavrovski I.,Kühne D.

Affiliation:

1. Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, England

2. Arbeitsgruppe Neuroradiologie, Radiologie II, Universitätsklinikum Innsbruck, Austria

3. Abteilung für Allgemeine und Spezielle Pathologie der Medizinischen Fakultät der Ruhr-Universität Bochum

Abstract

Endovascular treatment of intracranial aneurysms with electrolytically detachable coils is often claimed to be based on electrothrombosis, i.e. intra-aneurysmal thrombus formation through applied direct current. Despite the fact that this concept was described more than a century ago, the significance of electrothrombosis in the endovascular treatment of aneurysms remains debatable. Apart from electrothrombosis, mechanical obliteration of the aneurysmal lumen might be one of the many possible mechanisms to explain why and how detachable coils are effective in preventing aneurysms from (re-)rupture. The purpose of this experimental study was to investigate to what extent direct current comparable to that used for coil detachment would influence the adhesion of cellular and liquid blood components to the surface of electrolytically detachable platinum coils. For the in vitro study, electrolytically detachable platinum coils of various types were exposed to stagnant heparinised blood for a total of 16 h, without or with applied direct current for 30 or 90 s (1 mA, 4–6 V, coil as anode). For the in vivo study, electrolytically detachable platinum coils were exposed to flowing blood for 180 s, without or with applied direct current (2 mA, 4–6 V, coil as either anode or cathode), without anti-coagulation and after intravenous administration of 5000 U Heparin and again after the intravenous administration of 500 mg Aspisol in addition to Heparin. After exposure to blood according to these different experimental protocols, the coils were fixed in formalin solution, gold coated and examined by scanning electron microscopy. Thrombus formation on the surface of all unfibred coils was thin and highly variable both from coil to coil, and on different areas of any given coil. The application of direct current minimally enhanced thrombus formation in stagnant blood in vitro, but not in vivo. The cellular and fibrin adhesions on the coil surfaces without and with applied current did not effectively increase the diameter or volume of unfibred coils. Coils with attached nylon fibres, however, proved to be highly thrombogenic without or with application of current. In fibred coils, surface adhesions without and with applied current were voluminous enough to effectively increase the diameter of the coil, potentially important for the process of endosaccular aneurysm occlusion. Electrothrombosis plays no role in the endovascular treatment of intracranial aneurysms with electrolytically detachable coils. This explains why platinum coils with non-electrolytic detachment mechanisms show a similar efficiency and recurrence rate.

Publisher

SAGE Publications

Subject

Immunology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3