Non-invasive follow-up for intracranial aneurysms treated with contour neurovascular system—comparison of digital subtraction angiography (DSA) to magnetic resonance imaging (MRI) and spectral computed tomography angiography (CTA) in vitro

Author:

Madjidyar Jawid1ORCID,Pravdivtseva Mariya2,Hensler Johannes2ORCID,Jansen Olav2,Larsen Naomi2,Wodarg Fritz2ORCID

Affiliation:

1. Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland

2. Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany

Abstract

Purpose The contour neurovascular system (CNS) is an intrasaccular flow-disrupting device designed for the treatment of intracranial wide-necked bifurcation aneurysms. Metal artifacts limit magnetic resonance imaging (MRI) accessibility after implantation. The purpose of this in vitro study was to evaluate non-invasive imaging alternatives to digital subtraction angiography (DSA). Material and methods Three aneurysms of patients originally treated with CNS were three-dimensional (3D)-printed (one at the basilar tip and two at the middle cerebral artery bifurcation). CNS devices were implanted under fluoroscopic control into the 3D models. Post-implantation two-dimensional-DSA, flat panel computed tomography angiography (CTA), MRI, and spectral CTA were performed. Results Time of flight angiography and T1 weighted sequences showed large susceptibility artifacts at the detachment zone of the devices. A thin-sliced T2 weighted sequence in cross-sectional orientation to the aneurysm allowed visualization of the aneurysm dome, but the aneurysm neck and parent vessel could not be assessed. Focused spectral CTA, especially a 40 keV reconstruction with a metal artifact reduction algorithm (orthopedic metal artifact reduction (OMAR)), showed only minor artifacts at the detachment zone. This approach achieved a very similar result to DSA and flat panel computed tomography, enabling the assessment of the device structure, aneurysm perfusion, and parent vessel perfusion. Discussion and conclusion For non-invasive follow-up of CNS, focused 40 keV CTA with OMAR seems to be a valuable option. MRI can be valuable for larger aneurysms to assess the aneurysm dome, but was not suitable for evaluating the parent vessels and aneurysm neck after CNS implantation in this study.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3