Hierarchical Time Series Forecasting in Emergency Medical Services

Author:

Rostami-Tabar Bahman1ORCID,Hyndman Rob J.2

Affiliation:

1. Cardiff Business School, Cardiff University, UK

2. Department of Econometrics and Business Statistics, Monash University, Clayton, VIC, Australia

Abstract

Accurate forecasts of ambulance demand are crucial inputs when planning and deploying staff and fleet. Such demand forecasts are required at national, regional, and sub-regional levels and must take account of the nature of incidents and their priorities. These forecasts are often generated independently by different teams within the organization. As a result, forecasts at different levels may be inconsistent, resulting in conflicting decisions and a lack of coherent coordination in the service. To address this issue, we exploit the hierarchical and grouped structure of the demand time series and apply forecast reconciliation methods to generate both point and probabilistic forecasts that are coherent and use all the available data at all levels of disaggregation. The methods are applied to daily incident data from an ambulance service in Great Britain, from October 2015 to July 2019, disaggregated by nature of incident, priority, managing health board, and control area. We use an ensemble of forecasting models and show that the resulting forecasts are better than any individual forecasting model. We validate the forecasting approach using time series cross-validation.

Funder

Cardiff Business School

Australian Research Council Industrial Transformation Training Cen-tre in Optimisation Technologies, Integrated Methodologies, and Applications

Publisher

SAGE Publications

Reference42 articles.

1. An empirical investigation of forecasting methods for ambulance calls - a case study

2. Evaluating Forecasting Methods

3. Bandara K., Hyndman R. J., Bergmeir C. (2024 in press) “MSTL: A Seasonal-Trend Decomposition Algorithm for Time Series with Multiple Seasonal Patterns,” International J Operational Research.

4. Reproducibility in forecasting research

5. Combining forecasts: A review and annotated bibliography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3