Bidisperse Magnetorheological Fluids using Fe Particles at Nanometer and Micron Scale

Author:

Wereley N. M.1,Chaudhuri A.,Yoo J. -H.,John S.1,Kotha S.,Suggs A.,Radhakrishnan R.2,Love B. J.3,Sudarshan T. S.2

Affiliation:

1. Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA

2. Materials Modification Inc., 2721-D Merrilee Drive, Fairfax, VA 22031, USA

3. Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Abstract

Conventional magnetorheological (MR) fluids are suspensions of micron-sized particles in a hydraulic or silicone oil carrier fluid. Recently, research has been conducted on the advantages of using bidisperse fluids, which are mixtures of two different powder sizes in the MR suspension. The MR fluids investigated here use a mixture of conventional micron- sized particles and nanometer-sized particles. The settling rate of such bidisperse fluids using nanometer-sized particles is reduced because the nanoparticles fill pores created between the larger particles, thereby reducing fluid transport during creeping flow. This reduction in the settling rate comes at a cost of a reduction in the maximum yield stress that can be manifested by such an MR fluid at its saturation magnetization. There is a measurable and predictable variation in rheological properties as the weight percent (wt%) of the nanometer-sized particles is increased relative to the weight percent (wt%) of micron-sized particles, while maintaining a constant solids loading in the MR fluid samples. All bidisperse fluids tested in this study have a solids loading of 60 wt% of iron (Fe) particles. This study investigates the effect of increasing the wt% of 30 nm (nominal) Fe particles relative to 30 mm (nominal) Fe particles on rheological characteristics, such as yield stress and postyield viscosity. The goal of this study is to find an optimal composition of the bidisperse fluid that provides the best combination of high yield stress and low settling rate based on empirical measurements. The applicability of the Bingham-plastic rheological model to the measured flow curves of these MR fluids is also presented.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3