An adaptive learning damage estimation method for structural health monitoring

Author:

Chakraborty Debejyo1,Kovvali Narayan2,Papandreou-Suppappola Antonia2,Chattopadhyay Aditi3

Affiliation:

1. Global Research and Development, General Motors Corporation, Warren, MI, USA

2. School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA

3. School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA

Abstract

Structural health monitoring is an important problem of interest in many civil infrastructure and aerospace applications. In the last few decades, many techniques have been investigated to address the detection, estimation, and classification of damage in structural components. One of the key challenges in the development of real-world damage identification systems, however, is variability due to changing environmental and operational conditions. Conventional statistical methods based on static modeling frameworks can prove to be inadequate in a dynamic and fast changing environment, especially when a sufficient amount of data is not available. In this paper, a novel adaptive learning structural damage estimation method is proposed in which the stochastic models are allowed to perpetually change with the time-varying conditions. The adaptive learning framework is based on the use of Dirichlet process (DP) mixture models, which provide the capability of automatically adjusting to structure within the data. Specifically, time–frequency features are extracted from periodically collected structural data (measured sensor signals), that are responses to ultrasonic excitation of the material. These are then modeled using a DP mixture model that allows for a growing, possibly infinite, number of mixture components or latent clusters. Combined with input from physically based damage growth models, the adaptively identified clusters are used in a state-space setting to effectively estimate damage states within the structure under varying external conditions. Additionally, a data selection methodology is implemented to enable judicious selection of informative measurements for maximum performance. The utility of the proposed algorithm is demonstrated by application to the estimation of fatigue-induced damage in an aluminum compact tension sample subjected to variable-amplitude cyclic loading.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3