Energy harvesting using flexible piezoelectric materials from human walking motion: Theoretical analysis

Author:

Cha Youngsu1

Affiliation:

1. Center for Robotics Research, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea

Abstract

Human walking is a good energy source that can be harvested to support wearable devices. For one walking cycle, the muscles at each joint of human lower body consume tens of watts. The considerable amount of kinetic energy generated while walking can be turned to useful electric energy through energy transducers. In this article, we theoretically investigate energy harvesting from flexible piezoelectric materials attached to humans while walking. We focus on the hip, knee, and ankle motions of walking humans and analyze the frequency characteristic of the motions using Fourier series fitting. A model is utilized to predict the electrical responses from piezoelectric materials and the power harvested through load resistances. In particular, we estimate the harvested power from polyvinylidene fluoride and derive the contour maps with respect to the harvested power as a function of the load resistance and walking frequency. Moreover, we discuss the necessary mechanical power input required to deflect the energy harvester and the effects of the varied parameters.

Funder

KIST flagship program

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3