Piezoresistive Performance of Long-Fiber Composites with Carbon Nanotube Doped Matrix

Author:

Fernberg Patrik1,Nilsson Greger2,Joffe Roberts3

Affiliation:

1. SICOMP AB, P.O. Box 271, SE-941 26 Piteå, Sweden,

2. SICOMP AB, P.O. Box 271, SE-941 26 Piteå, Sweden

3. Luleå University of Technology, SE-971 87 Luleå, Sweden

Abstract

The electrical and mechanical properties of carbon nanotube (CNT) doped epoxy resin and composites based on this matrix were studied. The investigation was carried out on neat nanocomposites and on structural composites i.e., when the nanocomposite is used as matrix in composite materials reinforced with long continuous fibers. Tensile tests showed that CNT doped epoxy exhibited clear piezoresistive behavior. It was, however, also shown that geometrical changes of the specimen also contribute significantly to resistance changes during tensile loading. Particular effort was made to establish the relations between transverse cracking in glass fiber cross-ply laminates with nanotube doped matrix and changes of electrical resistance. It was shown that changes of electrical resistance during tensile loading of composites containing CNT doped matrix gives highly relevant information about the damage state of the material. In an unloaded state the resistance change is proportional to the relative change of stiffness. This work demonstrates that there are three different mechanisms, which contribute to changes of electrical resistance of a composite specimen subjected to tensile strain. These three mechanisms are: (a) geometrical changes of the specimen (b) piezoresistive material response, and (c) accumulation of micro-damage.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3