The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting

Author:

Triplett Angela1,Quinn D. Dane2

Affiliation:

1. Department of Mechanical Engineering, The University of Akron, Akron, Ohio 44325-3903, USA

2. Department of Mechanical Engineering, The University of Akron, Akron, Ohio 44325-3903, USA,

Abstract

Advances in electronic and consumer technology are increasing the need for smaller, more efficient energy sources. Thus vibration-based energy harvesting, the scavenging of energy from existing ambient vibration sources and its conversion to useful electrical power, is becoming an increasingly attractive alternative to traditional power sources such as batteries. Energy harvesting devices have been developed based on a number of electromechanical coupling mechanisms and their design must be optimized to produce the maximum output for given environmental conditions. While the role of non-linearities in the components has been shown to be significant in terms of the overall device efficiency, few studies have systematically investigated their influence on the system performance. In this work the role of a non-linear piezoelectric relationship is considered on the performance of a vibration-based energy harvester. Using a Poincaré-Lindstedt perturbation analysis the response of the harvesting system is approximated, including mechanical damping, stiffness non-linearities, and the above mentioned non-linear piezoelectric constitutive relationship. The predicted behavior is then compared against numerical simulations of the original system, focusing on the relationship between the power generated by the device, the ambient vibration characteristics, and the non-linearities in the system.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 168 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3