Dynamic analysis of a piezoelectric augmented beam system with adhesive bonding layer effects

Author:

Albakri Mohammad I.1,Tarazaga Pablo A.1

Affiliation:

1. Vibrations, Adaptive Structures and Testing Laboratory (VAST), Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA

Abstract

Embedded and surface bonded piezoelectric wafers have been widely used for control and monitoring purposes. Several nondestructive evaluation and structural health monitoring techniques, such as electromechanical impedance and wave propagation–based techniques, utilize piezoelectric wafers in either active or passive manner to interrogate the host structure. The basis of all these techniques is the energy transfer between the piezoelectric wafer and the host structure which takes place through an adhesive bonding layer. In this article, the high-frequency dynamic response of a coupled piezoelectric-beam system is modeled including the adhesive bonding layer in between. A new three-layer spectral element is developed for this purpose. The formulation of this new element takes into account axial and shear deformations, in addition to rotary inertia effects in all three layers. The capabilities of the proposed model are demonstrated through several numerical examples, where the effects of bonding layer geometric and material characteristics on dispersion relations and damage detection capabilities are discussed. The results highlight the importance of accounting for the adhesive bonding layer in piezoelectric-structure interaction models, especially when the high-frequency dynamic response is of interest.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3